We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.
In this Note we consider the following problem where is a bounded smooth starshaped domain in , , , , and . We prove that if is a solution of Morse index than cannot have more than maximum points in for sufficiently small. Moreover if is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for sufficiently small.
We consider the Yamabe type family of problems , in , on , where is an annulus-shaped domain of , , which becomes thinner as . We show that for every solution , the energy
as well as the Morse
index tend to infinity as . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on , a half-space or an infinite strip. Our argument also involves a Liouville type
theorem...
Download Results (CSV)