Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Commutativity of rings with polynomial constraints

Moharram A. Khan — 2002

Czechoslovak Mathematical Journal

Let p , q and r be fixed non-negative integers. In this note, it is shown that if R is left (right) s -unital ring satisfying [ f ( x p y q ) - x r y , x ] = 0 ( [ f ( x p y q ) - y x r , x ] = 0 , respectively) where f ( λ ) λ 2 [ λ ] , then R is commutative. Moreover, commutativity of R is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.

Commutativity of rings with constraints involving a subset

Moharram A. Khan — 2003

Czechoslovak Mathematical Journal

Suppose that R is an associative ring with identity 1 , J ( R ) the Jacobson radical of R , and N ( R ) the set of nilpotent elements of R . Let m 1 be a fixed positive integer and R an m -torsion-free ring with identity 1 . The main result of the present paper asserts that R is commutative if R satisfies both the conditions (i) [ x m , y m ] = 0 for all x , y R J ( R ) and (ii) [ ( x y ) m + y m x m , x ] = 0 = [ ( y x ) m + x m y m , x ] , for all x , y R J ( R ) . This result is also valid if (i) and (ii) are replaced by (i) ' [ x m , y m ] = 0 for all x , y R N ( R ) and (ii) ' [ ( x y ) m + y m x m , x ] = 0 = [ ( y x ) m + x m y m , x ] for all x , y R N ( R ) . Other similar commutativity...

Commutativity of rings through a Streb’s result

Moharram A. Khan — 2000

Czechoslovak Mathematical Journal

In this paper we investigate commutativity of rings with unity satisfying any one of the properties: { 1 - g ( y x m ) } [ y x m - x r f ( y x m ) x s , x ] { 1 - h ( y x m ) } = 0 , { 1 - g ( y x m ) } [ x m y - x r f ( y x m ) x s , x ] { 1 - h ( y x m ) } = 0 , y t [ x , y n ] = g ( x ) [ f ( x ) , y ] h ( x ) a n d [ x , y n ] y t = g ( x ) [ f ( x ) , y ] h ( x ) for some f ( X ) in X 2 [ X ] and g ( X ) , h ( X ) in [ X ] , where m 0 , r 0 , s 0 , n > 0 , t > 0 are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements x and y for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize...

Classification of rings satisfying some constraints on subsets

Moharram A. Khan — 2007

Archivum Mathematicum

Let R be an associative ring with identity 1 and J ( R ) the Jacobson radical of R . Suppose that m 1 is a fixed positive integer and R an m -torsion-free ring with 1 . In the present paper, it is shown that R is commutative if R satisfies both the conditions (i) [ x m , y m ] = 0 for all x , y R J ( R ) and (ii) [ x , [ x , y m ] ] = 0 , for all x , y R J ( R ) . This result is also valid if (ii) is replaced by (ii)’ [ ( y x ) m x m - x m ( x y ) m , x ] = 0 , for all x , y R N ( R ) . Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).

A note on rapid convergence of approximate solutions for second order periodic boundary value problems

Rahmat A. KhanBashir Ahmad — 2005

Archivum Mathematicum

In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order k ( k 2 ) .

An epidemic model with a time delay in transmission

Q. J. A. KhanE. V. Krishnan — 2003

Applications of Mathematics

We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation.

Page 1 Next

Download Results (CSV)