On structure of certain periodic rings and near-rings.
Let , and be fixed non-negative integers. In this note, it is shown that if is left (right) -unital ring satisfying (, respectively) where , then is commutative. Moreover, commutativity of is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
Suppose that is an associative ring with identity , the Jacobson radical of , and the set of nilpotent elements of . Let be a fixed positive integer and an -torsion-free ring with identity . The main result of the present paper asserts that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (i) and (ii) are replaced by (i) for all and (ii) for all . Other similar commutativity...
In this paper we investigate commutativity of rings with unity satisfying any one of the properties: for some in and , in , where , , , , are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements and for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize...
Let be an associative ring with identity and the Jacobson radical of . Suppose that is a fixed positive integer and an -torsion-free ring with . In the present paper, it is shown that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (ii) is replaced by (ii)’ , for all . Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
Page 1