Almost-n-fully normal spaces
The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.
We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω₁-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every compact Hausdorff space without non-trivial converging ω₁-sequences is first-countable and, in addition,...
The classical Erdös spaces are obtained as the subspaces of real separable Hilbert space consisting of the points with all coordinates rational or all coordinates irrational, respectively. One can create variations by specifying in which set each coordinate is allowed to vary. We investigate the homogeneity of the resulting subspaces. Our two main results are: in case all coordinates are allowed to vary in the same set the subspace need not be homogeneous, and by specifying different sets for different...
Page 1