On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products
We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.
Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.
We define Witten multiple zeta-functions associated with semisimple Lie algebras , of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...
Page 1