Improper intersection of analytic curves.
The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.
We show that for a polynomial mapping the Łojasiewicz exponent of F is attained on the set .
A complete characterization of the Łojasiewicz exponent at infinity for polynomial mappings of ℂ² into ℂ² is given. Moreover, a characterization of a component of a polynomial automorphism of ℂ² (in terms of the Łojasiewicz exponent at infinity) is given.
An effective formula for the Łojasiewicz exponent for analytic curves in a neighbourhood of 0 ∈ ℂ is given.
We give a relation between two theories of improper intersections, of Tworzewski and of Stückrad-Vogel, for the case of algebraic curves. Given two arbitrary quasiprojective curves V₁,V₂, the intersection cycle V₁ ∙ V₂ in the sense of Tworzewski turns out to be the rational part of the Vogel cycle v(V₁,V₂). We also give short proofs of two known effective formulae for the intersection cycle V₁ ∙ V₂ in terms of local parametrizations of the curves.
For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łojasiewicz exponent ₀(f) defined to be the smallest θ > 0 such that near 0 ∈ ℂ² for some c > 0. We investigate the set of all numbers ₀(f) where f runs over all holomorphic functions with an isolated critical point at 0 ∈ ℂ².
Page 1