The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

On a discrete version of the antipodal theorem

Krzysztof Oleszkiewicz — 1996

Fundamenta Mathematicae

The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping f : S k k there exists a point x S k such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which S k is replaced by the set of vertices of a high-dimensional cube equipped with Hamming’s metric. In place of equality we obtain some optimal estimates of i n f x | | f ( x ) - f ( - x ) | | which were previously known (as far as the author knows) only for f linear (cf. [1]).

Polydisc slicing in n

Krzysztof OleszkiewiczAleksander Pełczyński — 2000

Studia Mathematica

Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in n of codimension 1, v o l 2 n - 2 ( D n - 1 ) v o l 2 n - 2 ( H D n ) 2 v o l 2 n - 2 ( D n - 1 ) . The lower bound is attained if and only if H is orthogonal to the versor e j of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector e j + σ e k for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify n with 2 n ; by v o l k ( · ) we denote the usual k-dimensional volume in 2 n . The result is a complex counterpart of Ball’s [B1] result for...

Small ball probability estimates in terms of width

Rafał LatałaKrzysztof Oleszkiewicz — 2005

Studia Mathematica

A certain inequality conjectured by Vershynin is studied. It is proved that for any symmetric convex body K ⊆ ℝⁿ with inradius w and γₙ(K) ≤ 1/2 we have γ ( s K ) ( 2 s ) w ² / 4 γ ( K ) for any s ∈ [0,1], where γₙ is the standard Gaussian probability measure. Some natural corollaries are deduced. Another conjecture of Vershynin is proved to be false.

On Measure Concentration of Vector-Valued Maps

Michel LedouxKrzysztof Oleszkiewicz — 2007

Bulletin of the Polish Academy of Sciences. Mathematics

We study concentration properties for vector-valued maps. In particular, we describe inequalities which capture the exact dimensional behavior of Lipschitz maps with values in k . To this end, we study in particular a domination principle for projections which might be of independent interest. We further compare our conclusions with earlier results by Pinelis in the Gaussian case, and discuss extensions to the infinite-dimensional setting.

On the Signatures of Torus Knots

Maciej BorodzikKrzysztof Oleszkiewicz — 2010

Bulletin of the Polish Academy of Sciences. Mathematics

We study properties of the signature function of the torus knot T p , q . First we provide a very elementary proof of the formula for the integral of the signature over the circle. We also obtain a closed formula for the Tristram-Levine signature of a torus knot in terms of Dedekind sums.

Classes of measures closed under mixing and convolution. Weak stability

For a random vector X with a fixed distribution μ we construct a class of distributions ℳ(μ) = μ∘λ: λ ∈ , which is the class of all distributions of random vectors XΘ, where Θ is independent of X and has distribution λ. The problem is to characterize the distributions μ for which ℳ(μ) is closed under convolution. This is equivalent to the characterization of the random vectors X such that for all random variables Θ₁, Θ₂ independent of X, X’ there exists a random variable Θ independent of X such...

Page 1

Download Results (CSV)