On the asymptotic behavior of solutions of nonlinear ordinary differential equations
The system of nonlinear differential equations is under consideration, where and are positive constants and and are positive continuous functions on . There are three types of different asymptotic behavior at infinity of positive solutions of (). The aim of this paper is to establish criteria for the existence of solutions of these three types by means of fixed point techniques. Special emphasis is placed on those solutions with both components decreasing to zero as , which can be...
Two identities of the Picone type for a class of half-linear differential systems in the plane are established and the Sturmian comparison theory for such systems is developed with the help of these new formulas.
Positive solutions of the nonlinear second-order differential equation are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.
Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form where is a constant and is positive continuous function on , are given in terms of an increasing continuously differentiable function from to which satisfies .
Si dànno condizioni sufficienti perché tutte le traiettorie oscillatorie del sistema differenziale , tendano a zero quando .
In questo lavoro la ben nota identità di M. Picone è generalizzata agli operatori differenziali ordinari autoaggiunti di ordine superiore. Tale identità generalizzata è impiegata per conseguire teoremi di confronto del tipo di Sturm e criteri di non oscillazione per le soluzioni di equazioni (o diseguaglianze) relative a tali operatori.
Scopo di questo lavoro è di stabilire alcuni criteri di non-oscillazione nel senso di Kuks [2] e teoremi di confronto del tipo di Sturm per una classe di sistemi ellittici di equazioni a derivate parziali del quarto ordine.
Page 1 Next