On the singularities of convex functions.
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is empty...
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is empty...
Page 1