On the propagation of singularities of semi-convex functions

L. Ambrosio; P. Cannarsa; H. M. Soner

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 4, page 597-616
  • ISSN: 0391-173X

How to cite

top

Ambrosio, L., Cannarsa, P., and Soner, H. M.. "On the propagation of singularities of semi-convex functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 597-616. <http://eudml.org/doc/84162>.

@article{Ambrosio1993,
author = {Ambrosio, L., Cannarsa, P., Soner, H. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {propagation of singularities; semi-convexity; reachable subgradients; viscosity solutions; Hamilton-Jacobi-Bellman equations},
language = {eng},
number = {4},
pages = {597-616},
publisher = {Scuola normale superiore},
title = {On the propagation of singularities of semi-convex functions},
url = {http://eudml.org/doc/84162},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Ambrosio, L.
AU - Cannarsa, P.
AU - Soner, H. M.
TI - On the propagation of singularities of semi-convex functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 597
EP - 616
LA - eng
KW - propagation of singularities; semi-convexity; reachable subgradients; viscosity solutions; Hamilton-Jacobi-Bellman equations
UR - http://eudml.org/doc/84162
ER -

References

top
  1. [1] G. Alberti - L. Ambrosio - P. Cannarsa, On the singularities of convex functions. Manuscripta Math.76 (1992), 421-435. Zbl0784.49011MR1185029
  2. [2] L. Ambrosio, Su alcune proprietà delle funzioni convesse. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (1992) (to appear). 
  3. [3] J.P. Aubin - H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston, 1990. Zbl0713.49021MR1048347
  4. [4] P. Cannarsa - H.M. Soner, On the singularities of the viscosity solutions to Hamilton - Jacobi Bellman equations. Indiana Univ. Math. J.36 (1987), 501-524. Zbl0612.70016MR905608
  5. [5] P. Cannarsa - H.M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications. Nonlinear Anal.13 (1989), 305-323. Zbl0681.49030MR986450
  6. [6] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley & Sons, New York, 1983. Zbl0582.49001MR709590
  7. [7] M.G. Crandall - L.C. Evans - P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Mat. Soc.282 (1984), 487-502. Zbl0543.35011MR732102
  8. [8] M.G. Crandall - P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Mat. Soc.277 (1983), 1-42. Zbl0599.35024MR690039
  9. [9] I. Ekeland - R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  10. [10] H. Federer, Geometric Measure Theory. Springer Verlag, Berlin, 1969. Zbl0176.00801MR257325
  11. [11] W.H. Fleming, The Cauchy problem for a nonlinear first order partial differential equation. J. Differential Equations5 (1969), 515-530. Zbl0172.13901MR235269
  12. [12] H. Ishii, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations. Indiana Univ. Math. J.33 (1984), 721-748. Zbl0551.49016MR756156
  13. [13] H. Ishii - P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations83 (1990), 26-78. Zbl0708.35031MR1031377
  14. [14] R. Jensen - P.E. Souganidis, A regularity result for viscosity solutions of Hamilton-Jacobi equations in one space dimension. Trans. Amer. Math. Soc.301 (1987), 137-147. Zbl0657.35083MR879566
  15. [15] S.N. Kruzkov, Generalized solutions of Hamilton-Jacobi equations of eikonal type I. Math. USSR-Sb.27 (1975), 406-446. Zbl0369.35012
  16. [16] P.L. Lions, Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston, 1982. Zbl0497.35001MR667669
  17. [17] F. Morgan, Geometric Measure Theory - A beginner's guide. Academic Press, Boston, 1988. Zbl0671.49043MR933756
  18. [18] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  19. [19] L. Simon, Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis. Australian National University, Camberra, 1983. Zbl0546.49019MR756417
  20. [20] L. Tonelli, Lezioni di Analisi Matematica, vol. I. Tacchi Editrice, Pisa, 1940. JFM67.0151.07
  21. [21] M. Tsuji, Formation of singularities for Hamilton-Jacobi equations II. J. Math. Kyoto Univ.26 (1986), 299-308. Zbl0655.35009MR849221

Citations in EuDML Documents

top
  1. Andrea C. G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity
  2. Yifeng Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations
  3. Andrea C.G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity
  4. Emmanuel Trélat, Global subanalytic solutions of Hamilton–Jacobi type equations
  5. Paolo Albano, Piermarco Cannarsa, Structural properties of singularities of semiconcave functions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.