On the distance function of a connected graph
An axiomatic characterization of the distance function of a connected graph is given in this note. The triangle inequality is not contained in this characterization.
An axiomatic characterization of the distance function of a connected graph is given in this note. The triangle inequality is not contained in this characterization.
In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.
If is a connected graph of order , then by a hamiltonian coloring of we mean a mapping of into the set of all positive integers such that (where denotes the length of a longest path in ) for all distinct . Let be a connected graph. By the hamiltonian chromatic number of we mean where the minimum is taken over all hamiltonian colorings of . The main result of this paper can be formulated as follows: Let be a connected graph of order . Assume that there exists a subgraph...
If is a connected graph with distance function , then by a step in is meant an ordered triple of vertices of such that and . A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2.
In this paper, by a travel groupoid is meant an ordered pair such that is a nonempty set and is a binary operation on satisfying the following two conditions for all : Let be a travel groupoid. It is easy to show that if , then if and only if . We say that is on a (finite or infinite) graph if and Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.
By a ternary system we mean an ordered pair , where is a finite nonempty set and . By a signpost system we mean a ternary system satisfying the following conditions for all : if , then and ; if , then there exists such that . In this paper, a signpost system is used as a common description of a connected graph and a spanning tree of the graph. By a ct-pair we mean an ordered pair , where is a connected graph and is a spanning tree of . If is a ct-pair, then by the guide to...
Page 1 Next