Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Optimal destabilizing vectors in some Gauge theoretical moduli problems

Laurent Bruasse — 2006

Annales de l’institut Fourier

We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing 1 -parameter subgroups are the same thing when considered in the gauge theoretical framework. Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears...

Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans torsion

Laurent Bruasse — 2003

Annales de l’institut Fourier

On généralise dans cet article la notion de filtration de Harder-Narasimhan au cas des fibrés complexes sur une variété presque complexe compacte d'une part, et au cas des faisceaux cohérents sans torsion sur une variété holomorphe d'autre part. On démontre, dans les deux cas, l'existence d'un déstabilisant maximal. On obtient un théorème de convergence en famille et par là-même l'ouverture de la stabilité en déformation.

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent BruasseAndrei Teleman — 2005

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Page 1

Download Results (CSV)