The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

A cluster algebra approach to q -characters of Kirillov–Reshetikhin modules

David HernandezBernard Leclerc — 2016

Journal of the European Mathematical Society

We describe a cluster algebra algorithm for calculating q -characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra U q ( 𝔤 ^ ) . This yields a geometric q -character formula for tensor products of Kirillov–Reshetikhin modules. When 𝔤 is of type A , D , E , this formula extends Nakajima’s formula for q -characters of standard modules in terms of homology of graded quiver varieties.

Partial flag varieties and preprojective algebras

Christof GeißBernard LeclercJan Schröer — 2008

Annales de l’institut Fourier

Let Λ be a preprojective algebra of type A , D , E , and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ -module, and we introduce a mutation operation between complete rigid modules in Sub Q . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to  G .

Twisted action of the symmetric group on the cohomology of a flag manifold

Alain LascouxBernard LeclercJean-Yves Thibon — 1996

Banach Center Publications

Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a...

Page 1

Download Results (CSV)