Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Translation-invariant operators on Lorentz spaces L(1,q) with 0 < q < 1

Leonardo ColzaniPeter Sjögren — 1999

Studia Mathematica

We study convolution operators bounded on the non-normable Lorentz spaces L 1 , q of the real line and the torus. Here 0 < q < 1. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on L 1 , q . In particular, when the positions of the atoms of a discrete measure are linearly independent over the rationals,...

From restricted type to strong type estimates on quasi-Banach rearrangement invariant spaces

María CarroLeonardo ColzaniGord Sinnamon — 2007

Studia Mathematica

Let X be a quasi-Banach rearrangement invariant space and let T be an (ε,δ)-atomic operator for which a restricted type estimate of the form T χ E X D ( | E | ) for some positive function D and every measurable set E is known. We show that this estimate can be extended to the set of all positive functions f ∈ L¹ such that | | f | | 1 , in the sense that T f X D ( | | f | | ) . This inequality allows us to obtain strong type estimates for T on several classes of spaces as soon as some information about the galb of the space X is known. In this paper...

Page 1

Download Results (CSV)