The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a number field defined by an irreducible polynomial and its ring of integers. For every prime integer , we give sufficient and necessary conditions on that guarantee the existence of exactly prime ideals of lying above , where factors into powers of monic irreducible polynomials in . The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly prime ideals of lying above . We further specify...
Let be a valued field, where is a rank one discrete valuation. Let be its ring of valuation, its maximal ideal, and an extension of , defined by a monic irreducible polynomial . Assume that factors as a product of distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly distinct valuations of extending is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite...
Let be a number field generated by a complex root of a monic irreducible polynomial , , is a square free rational integer. We prove that if or and , then the number field is monogenic. If or , then the number field is not monogenic.
Download Results (CSV)