A new approach to estimate the critical constant of selection procedures.
A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply is ). Let denote the -shape tree obtained by identifying the end vertices of three paths , and . We prove that its all line graphs except () are , and determine the graphs which have the same signless Laplacian spectrum as . Let be the maximum signless Laplacian eigenvalue of the graph . We give the limit of , too.
This paper is part of the autumn school on "Variational problems and higher order PDEs for affine hypersurfaces". We discuss affine Bernstein problems and complete constant mean curvature surfaces in equiaffine differential geometry.
We prove a theorem on the growth of a solution of a kth-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
We deal with a uniqueness theorem of two meromorphic functions that share three values with weights and also share a set consisting of two small meromorphic functions. Our results improve those by G. Brosch, I. Lahiri & P. Sahoo, T. C. Alzahary & H. X. Yi, P. Li & C. C. Yang, and others.
We prove some uniqueness theorems for meromorphic functions and their derivatives that share a meromorphic function whose order is less than those of the above meromorphic functions. The results in this paper improve those given by G. G. Gundersen & L. Z. Yang, J. P. Wang, J. M. Chang & Y. Z. Zhu, and others. Some examples are provided to show that our results are the best possible.
We prove some results on uniqueness of functions with three shared values. Our results improve those given by H. X. Yi, I. Lahiri, T. C. Alzahary & H. X. Yi, and other authors.
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.
Page 1 Next