Let be a simple graph. A -valued function is said to be a minus dominating function if for every vertex , , where is the closed neighborhood of . The weight of a minus dominating function on is . The minus domination number of a graph , denoted by , equals the minimum weight of a minus dominating function on . In this paper, the following two results are obtained. (1) If is a bipartite graph of order , then
(2) For any negative integer and any positive integer , there exists...
Let be a simple graph. A subset is a dominating set of , if for any vertex there exists a vertex such that . The domination number, denoted by , is the minimum cardinality of a dominating set. In this paper we prove that if is a 4-regular graph with order , then .
An edge of a -connected graph is said to be -contractible (or simply contractible) if the graph obtained from by contracting (i.e., deleting and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still -connected. In 2002, Kawarabayashi proved that for any odd integer , if is a -connected graph and contains no subgraph , then has a -contractible edge. In this paper, by generalizing this result, we prove that for any integer...
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The minimum number of vertices in a connected dominating set of is called the connected domination number of , and is denoted by . Let be a spanning subgraph of and let be the complement of relative to ; that is, is a factorization of . The graph is --critical relative to if and for each edge . First, we discuss some classes of graphs whether they are -critical relative...
We initiate the study of signed majority total domination in graphs. Let be a simple graph. For any real valued function and , let . A signed majority total dominating function is a function such that for at least a half of the vertices . The signed majority total domination number of a graph is is a signed majority total dominating function on . We research some properties of the signed majority total domination number of a graph and obtain a few lower bounds of .
A sign pattern is a sign pattern if has no zero entries. allows orthogonality if there exists a real orthogonal matrix whose sign pattern equals . Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for sign patterns with to allow orthogonality.
The signed distance--domination number of a graph is a certain variant of the signed domination number. If is a vertex of a graph , the open -neighborhood of , denoted by , is the set and . is the closed -neighborhood of . A function is a signed distance--dominating function of , if for every vertex , . The signed distance--domination number, denoted by , is the minimum weight of a signed distance--dominating function on . The values of are found for graphs with small diameter,...
Let be a simple graph. A subset is a dominating set of , if for any vertex , there exists a vertex such that . The domination number, denoted by , is the minimum cardinality of a dominating set. In this paper we will prove that if is a 5-regular graph, then .
In this paper we initiate the study of total restrained domination in graphs. Let be a graph. A total restrained dominating set is a set where every vertex in is adjacent to a vertex in as well as to another vertex in , and every vertex in is adjacent to another vertex in . The total restrained domination number of , denoted by , is the smallest cardinality of a total restrained dominating set of . First, some exact values and sharp bounds for are given in Section 2. Then the Nordhaus-Gaddum-type...
In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations (−Δ)su+V(x)u=λf(x,u)inRN,
where [...] (−Δ)su(x)=2limε→0∫RN∖Bε(X)u(x)−u(y)|x−y|N+2sdy,x∈RN is a fractional operator and s ∈ (0, 1). By using variational methods, we prove this problem has at least two nontrivial solutions in a suitable weighted fractional Sobolev space.
The independent domination number (independent number ) is the minimum (maximum) cardinality among all maximal independent sets of . Haviland (1995) conjectured that any connected regular graph of order and degree satisfies . For , the subset graph is the bipartite graph whose vertices are the - and -subsets of an element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for and prove that...
Download Results (CSV)