The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A semifilter approach to selection principles

Lubomyr Zdomsky — 2005

Commentationes Mathematicae Universitatis Carolinae

In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal 𝔤 is a lower bound of the additivity number of the σ -ideal generated by Menger subspaces of the Baire space, and under 𝔲 < 𝔤 every subset X of the real line with the property Split ( Λ , Λ ) is Hurewicz, and thus it is consistent with ZFC that the property Split ( Λ , Λ ) is preserved by unions of less than 𝔟 subsets of the real line.

A semifilter approach to selection principles II: τ * -covers

Lubomyr Zdomsky — 2006

Commentationes Mathematicae Universitatis Carolinae

Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property fin ( 𝒪 , T * ) provided ( 𝔲 < 𝔤 ) , and every space with the property fin ( 𝒪 , T * ) is Hurewicz provided ( Depth + ( [ ω ] 0 ) 𝔟 ) . Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties P and Q [do not] coincide, where P and Q run over fin ( 𝒪 , Γ ) , fin ( 𝒪 , T ) , fin ( 𝒪 , T * ) , fin ( 𝒪 , Ω ) , and fin ( 𝒪 , 𝒪 ) .

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz TsabanLubomyr Zdomsky — 2012

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

On meager function spaces, network character and meager convergence in topological spaces

Taras O. BanakhVolodymyr MykhaylyukLubomyr Zdomsky — 2011

Commentationes Mathematicae Universitatis Carolinae

For a non-isolated point x of a topological space X let nw χ ( x ) be the smallest cardinality of a family 𝒩 of infinite subsets of X such that each neighborhood O ( x ) X of x contains a set N 𝒩 . We prove that (a) each infinite compact Hausdorff space X contains a non-isolated point x with nw χ ( x ) = 0 ; (b) for each point x X with nw χ ( x ) = 0 there is an injective sequence ( x n ) n ω in X that -converges to x for some meager filter on ω ; (c) if a functionally Hausdorff space X contains an -convergent injective sequence for some meager filter...

Page 1

Download Results (CSV)