We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.
Si considera un processo di controllo in uno spazio di Hilbert, descritto da una coppia . è un operatore di evoluzione invertibile. Si prova che questo processo di controllo è stabilizzabile se e solo se esso è uniformemente controllabile.
We study the problem of identification of an input to a linear finite-dimensional system. We assume that the input has a feedback form, which is related to a problem often encountered in fault detection. The method we use is to embed the identification problem in a class of inverse problems of dynamics for controlled systems. Two algorithms for identification of a feedback matrix based on the method of feedback control with a model are constructed. These algorithms are stable with respect to noise-corrupted...
Download Results (CSV)