Special Connections on Almost-Multifoliate Riemannian Manifolds.
This paper is devoted to define a characteristic homomorphism for a subfoliation and to study its relation with the usual characteristic homomorphism for each foliation (as defined by Bott). Moreover, two applications are given: 1) the Yamato’s 2-codimensional foliation is shown to be no homotopic to in a (1,2)-codimensional subfoliation; 2) an obstruction to the existence of everywhere independent and transverse infinitesimal transformations of a foliation is obtained, when and these...
A topological obstruction for a foliation be a sub-foliation of another is given by comparing the images of the associated characteristic homomorphisms (in the sense of Lehmann).
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
We classify the -dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure we describe the space of symplectic forms which are compatible with .
Page 1