The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Calculating a determinant associated with multiplicative functions

P. CodecáM. Nair — 2002

Bollettino dell'Unione Matematica Italiana

Let h be a complex valued multiplicative function. For any N N , we compute the value of the determinant D N := det i | N , j | N h i , j i j where i , j denotes the greatest common divisor of i and j , which appear in increasing order in rows and columns. Precisely we prove that D N = p l N 1 p l l + 1 i = 1 l h p i - h p i - 1 τ N / p l . This means that D N 1 / τ N is a multiplicative function of N . The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions f n , with 0 f p < 1 , as minimal values of certain...

Links between Δ x , N = n x N , n , N = 1 1 - x ϕ N and character sums

P. CodecáM. Nair — 2003

Bollettino dell'Unione Matematica Italiana

We express Δ x , N , as defined in the title, for x = a q and q prime in terms of values of characters modulo q . Using this, we show that the universal lower bound for Δ N = sup x R Δ x , N can, in general, be substantially improved when N is composed of primes lying in a fixed residue class modulo q . We also prove a corresponding improvement when N is the product of the first s primes for infinitely many natural numbers s .

An iterative procedure for solving the Riccati equation A₂R - RA₁ = A₃ + RA₄R

M. Thamban Nair — 2001

Studia Mathematica

Let X₁ and X₂ be complex Banach spaces, and let A₁ ∈ BL(X₁), A₂ ∈ BL(X₂), A₃ ∈ BL(X₁,X₂) and A₄ ∈ BL(X₂,X₁). We propose an iterative procedure which is a modified form of Newton's iterations for obtaining approximations for the solution R ∈ BL(X₁,X₂) of the Riccati equation A₂R - RA₁ = A₃ + RA₄R, and show that the convergence of the method is quadratic. The advantage of the present procedure is that the conditions imposed on the operators A₁, A₂, A₃, A₄ are weaker than the corresponding conditions...

A discrepancy principle for Tikhonov regularization with approximately specified data

M. Thamban NairEberhard Schock — 1998

Annales Polonici Mathematici

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation ( T * T + α I ) x α δ = T * y δ , | y - y δ | δ , in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and T * y δ are approximated by Aₙ and z δ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable...

Truncated spectral regularization for an ill-posed non-linear parabolic problem

Ajoy JanaM. Thamban Nair — 2019

Czechoslovak Mathematical Journal

It is known that the nonlinear nonhomogeneous backward Cauchy problem u t ( t ) + A u ( t ) = f ( t , u ( t ) ) , 0 t < τ with u ( τ ) = φ , where A is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on φ and f , that a solution of the above problem satisfies an integral equation involving the spectral representation of A , which is also ill-posed. Spectral truncation is used...

Page 1

Download Results (CSV)