The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Étant donnés champs de vecteurs , réels, de classe dans , nous étudions l’existence de traces sur une variété de classe , de dimension , frontière d’un ouvert , des distributions telles que:
Le but de ce travail est d’étudier l’existence, l’unicité et la régularité jusqu’au bord de solutions du problème de Dirichlet pour les opérateurs de la forme , qui ont été introduits dans Springer-Verlag, Berlin, 1963 par Lärs Hörmander. Pour cela, nous utilisons, en plus de l’hypothèse de L. Hörmander, une hypothèse de transversalité à la frontière, hypothèse qui permet de démontrer une estimation au bord.
Nous étudions en détail l’équation de Kolmogorov: .
Let an open set in near , a suitable holomorphic function near . If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : , ( is a form, closed in in with supp, then we deduce an extension result for functions on , as holomorphic fonctions in .
Download Results (CSV)