Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems.
We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.
Page 1