Teoría de sistemas de infinitas ecuaciones lineales y programación semi-infinita.
En este trabajo aplicamos la teoría de Dubovickii y Miljutin para deducir una condición necesaria de optimalidad relativa al problema de Programación Semi-Infinita convexa no diferenciable, asumiendo la cualificación de Slater. Se introduce así un nuevo procedimiento para verificar la validez de esta cualificación.
Dado un Problema de Programación Semi-Infinita, si se puede obtener una representación finita del conjunto factible, pueden aplicarse para resolver el problema los métodos de programación con restricciones finitas. En la primera parte se caracterizan los sistemas lineales infinitos que pueden ser reducidos a un sistema finito equivalente, dándose además condiciones suficientes y métodos para efectuar tal reducción. En la segunda parte se establecen diferentes procedimientos de obtención...
We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding to Gale, Farkas, Gordan and Motzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.
Page 1