The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We review topological properties of Kähler and symplectic manifolds, and of their odd-dimensional counterparts, coKähler and cosymplectic manifolds. We focus on formality, Lefschetz property and parity of Betti numbers, also distinguishing the simply-connected case (in the Kähler/symplectic situation) and the b1 = 1 case (in the coKähler/cosymplectic situation).
It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on -manifolds and fundamental 4-forms in quaternionic manifolds are discussed.
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
We classify the -dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure we describe the space of symplectic forms which are compatible with .
In this paper we present recent results concerning the Lichnerowicz-Poisson cohomology and the canonical homology of Poisson manifolds.
Download Results (CSV)