The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Curvatures of the diagonal lift from an affine manifold to the linear frame bundle

Oldřich KowalskiMasami Sekizawa — 2012

Open Mathematics

We investigate the curvature of the so-called diagonal lift from an affine manifold to the linear frame bundle LM. This is an affine analogue (but not a direct generalization) of the Sasaki-Mok metric on LM investigated by L.A. Cordero and M. de León in 1986. The Sasaki-Mok metric is constructed over a Riemannian manifold as base manifold. We receive analogous and, surprisingly, even stronger results in our affine setting.

Invariance of g -natural metrics on linear frame bundles

Oldřich KowalskiMasami Sekizawa — 2008

Archivum Mathematicum

In this paper we prove that each g -natural metric on a linear frame bundle L M over a Riemannian manifold ( M , g ) is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define g -natural metrics on the orthonormal frame bundle O M and we prove the same invariance result as above for O M . Hence we see that, over a space ( M , g ) of constant sectional curvature, the bundle O M with an arbitrary g -natural metric G ˜ is locally homogeneous.

Page 1

Download Results (CSV)