We study the variation of the reduction type of elliptic curves under base change. A complete description of the variation is given when the base field is the p-adic field and the base change is of small degree.
We prove that the -invariant of an elliptic curve defined over an imaginary quadratic number field having good reduction everywhere satisfies certain Diophantine equations under some hypothesis on the arithmetic of the quadratic field. By solving the Diophantine equations explicitly in the rings of quadratic integers, we show the non-existence of such elliptic curve for certain imaginary quadratic fields. This extends the results due to Setzer and Stroeker.
Galois extensions with various metacyclic Galois groups are constructed by means of a Kummer theory arising from an isogeny of certain algebraic tori. In particular, our method enables us to construct algebraic tori parameterizing metacyclic extensions.
Download Results (CSV)