On Quasiregualr Mappings and Domains with a Complete Conformal Metric.
The Möbius metric is studied in the cases, where its domain is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.
T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.
Let be a mapping from a metric space X to a metric space Y, and let α be a positive real number. Write dim (E) and H(E) for the Hausdorff dimension and the s-dimensional Hausdorff measure of a set E. We give sufficient conditions that the equality dim (f(E)) = αdim (E) holds for each E ⊆ X. The problem is studied also for the Cantor ternary function G. It is shown that there is a subset M of the Cantor ternary set such that H(M) = 1, with s = log2/log3 and dim(G(E)) = (log3/log2) dim (E), for every...
Page 1