Dans cet article nous étudions les feuilletages, transversalement orientables, de codimension 1 et classe , , qui n’admettent aucune transversale fermée nulle-homotope. Si est l’inclusion de la feuille , l’application induite sur les groupes fondamentaux, et une antireprésentation d’holonomie de , alors cette condition est équivalente à la suivante :
Résultats : Si est une variété dont...
Dans cet article nous prouvons que si est une variété de dimension , munie d’un feuilletage de codimension 1, transversalement analytique et transversalement orientable, qui possède une transversale fermée qui coupe toutes les feuilles, alors si est abélien, les feuilles à holonomie non triviale sont fermées, en nombre fini et ont toutes des groupes (, inclusion d’une feuille dans ) isomorphes.
Soit une -variété close et connexe munie d’une action localement libre de sur , on démontre : si ne contient pas d’éléments d’ordre fini, l’inclusion de toute feuille de dans induit un monomorphisme des groupes fondamentaux.
Comme application on prouve que le rang de est .
Download Results (CSV)