Sur la fonction
Pour assez grand, le nombre de diviseurs premiers de , , a une distribution locale unimodale. Cela confirme une conjecture d’Erdös de 1948.
We describe the average behaviour of the Brjuno function Φ in the neighbourhood of any given point of the unit interval. In particular, we show that the Lebesgue set of Φ is the set of Brjuno numbers and we find the asymptotic behaviour of the modulus of continuity of the integral of Φ.
Let . We prove the following asymptotic formula with , uniformly for .
Page 1