The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Goldstern–Judah–Shelah preservation theorem for countable support iterations

Miroslav Repický — 1994

Fundamenta Mathematicae

[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń’s diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362. [5] H....

Spaces not distinguishing convergences

Miroslav Repický — 2000

Commentationes Mathematicae Universitatis Carolinae

In the present paper we introduce a convergence condition ( Σ ' ) and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.

Perfect sets and collapsing continuum

Miroslav Repický — 2003

Commentationes Mathematicae Universitatis Carolinae

Under Martin’s axiom, collapsing of the continuum by Sacks forcing 𝕊 is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if 𝔡 = 𝔠 proving that under this hypothesis there are no small uncountable maximal antichains in 𝕊 . We also construct a partition of ω 2 into 𝔠 perfect sets which is a maximal antichain in 𝕊 and show that s 0 -sets are exactly (subsets of) selectors of maximal antichains of perfect sets.

Page 1

Download Results (CSV)