The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Condition nécessaire et suffisante pour que certain groupe de Galois soit métacyclique

Abdelmalek AziziMohammed Taous — 2009

Annales mathématiques Blaise Pascal

Soient d est un entier sans facteurs carrés, K = Q ( d , i ) , i = - 1 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G = Gal ( K 2 ( 2 ) / K ) le groupe de Galois de K 2 ( 2 ) / K . Notre but est de montrer qu’il existe une forme de d tel que le 2 -groupe G est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe G soit métacyclique dans le cas où d = 2 p avec p un nombre premier tel que p 1 ( mod 4 ) .

On some metabelian 2-groups and applications I

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2016

Colloquium Mathematicae

Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition G a l ( k ( 2 ) / k ) G , where k ( 2 ) is the second Hilbert 2-class field of k.

Sur un problème de capitulation du corps ( p 1 p 2 , i ) dont le 2 -groupe de classes est élémentaire

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2014

Czechoslovak Mathematical Journal

Soient p 1 p 2 1 ( mod 8 ) des nombres premiers tels que, ( p 1 p 2 ) = - 1 et ( 2 a + b ) = - 1 , où p 1 p 2 = a 2 + b 2 . Soient i = - 1 , d = p 1 p 2 , 𝕜 = ( d , i ) , 𝕜 2 ( 1 ) le 2-corps de classes de Hilbert de 𝕜 et 𝕜 ( * ) = ( p 1 , p 2 , i ) le corps de genres de 𝕜 . La 2-partie C 𝕜 , 2 du groupe de classes de 𝕜 est de type ( 2 , 2 , 2 ) , par suite 𝕜 2 ( 1 ) contient sept extensions quadratiques non ramifiées 𝕂 j / 𝕜 et sept extensions biquadratiques non ramifiées 𝕃 j / 𝕜 . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe C 𝕜 , 2 et à étudier la capitulation des 2-classes d’idéaux de 𝕜 dans ces extensions.

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2016

Mathematica Bohemica

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove that each...

Page 1

Download Results (CSV)