On Steenbrink's conjecture.
We study the structure of the filtered Gauss-Manin system associated to a holomorphic function with an isolated singularity, and get a basis of the Brieskorn lattice over such that the action of is expressed by for two matrices with semi-simple, where is the basis. As an application, we calculate the -function of in the case of two variables.
For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.
We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point...
Page 1