Some consequences of perversity of vanishing cycles
Alexandru Dimca[1]; Morihiko Saito
- [1] Université de Nice-Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02 (France), Kyoto University, RIMS, Kyoto 606-8502 (Japan)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 1769-1792
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDimca, Alexandru, and Saito, Morihiko. "Some consequences of perversity of vanishing cycles." Annales de l’institut Fourier 54.6 (2004): 1769-1792. <http://eudml.org/doc/116158>.
@article{Dimca2004,
abstract = {For a holomorphic function on a complex manifold, we show that the vanishing cohomology
of lower degree at a point is determined by that for the points near it, using the
perversity of the vanishing cycle complex. We calculate this order of vanishing
explicitly in the case the hypersurface has simple normal crossings outside the point. We
also give some applications to the size of Jordan blocks for monodromy.},
affiliation = {Université de Nice-Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02 (France), Kyoto University, RIMS, Kyoto 606-8502 (Japan)},
author = {Dimca, Alexandru, Saito, Morihiko},
journal = {Annales de l’institut Fourier},
keywords = {Milnor fibration; perverse sheaf; vanishing cycles; monodromy; mixed Hodge structures; nearby cycles; vanishing cohomology sheaf},
language = {eng},
number = {6},
pages = {1769-1792},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some consequences of perversity of vanishing cycles},
url = {http://eudml.org/doc/116158},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Dimca, Alexandru
AU - Saito, Morihiko
TI - Some consequences of perversity of vanishing cycles
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1769
EP - 1792
AB - For a holomorphic function on a complex manifold, we show that the vanishing cohomology
of lower degree at a point is determined by that for the points near it, using the
perversity of the vanishing cycle complex. We calculate this order of vanishing
explicitly in the case the hypersurface has simple normal crossings outside the point. We
also give some applications to the size of Jordan blocks for monodromy.
LA - eng
KW - Milnor fibration; perverse sheaf; vanishing cycles; monodromy; mixed Hodge structures; nearby cycles; vanishing cohomology sheaf
UR - http://eudml.org/doc/116158
ER -
References
top- D. Barlet, Interaction de strates consécutives pour les cycles évanescents, Ann. Sci. École Norm. Sup. (4) 24 (1991), 401-505 Zbl0772.32024MR1123558
- A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, 100 (1982), Soc. Math. France, Paris Zbl0536.14011MR751966
- J.L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales 140-141 (1986), 3-134 Zbl0624.32009
- N. Budur, M. Saito, Multiplier ideals, -filtration, and spectrum Zbl1086.14013
- D. Cohen, A. Suciu, On Milnor fibrations of arrangements, J. London Math. Soc. 51 (1995), 105-119 Zbl0814.32007MR1310725
- P. Deligne, Théorie de Hodge I, Actes Congrès Intern. Math. 1 (1970), 425-430 Zbl0219.14006MR441965
- P. Deligne, Le formalisme des cycles évanescents, SGA7 Exposé XIII (1973), 82-115, Springer, Berlin Zbl0266.14008
- A. Dimca, A. Libgober, Local topology of reducible divisors Zbl1117.14037
- A. Dimca, M. Saito, Monodromy at infinity and the weights of cohomology, Compos. Math. 138 (2003), 55-71 Zbl1039.32037MR2002954
- W. Fulton, Intersection theory, (1984), Springer, Berlin Zbl0541.14005MR732620
- M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) 1016 (1983), 134-142, Springer, Berlin Zbl0566.32022
- B. Malgrange, Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II-III (Luminy, 1981) 101-102 (1983), 243-267 Zbl0528.32007
- V. Navarro Aznar, Sur la théorie de Hodge-Deligne, Inv. Math. 90 (1987), 11-76 Zbl0639.14002MR906579
- P. Orlik, R. Randell, The Milnor fiber of a generic arrangement, Ark. Mat. 31 (1993), 71-81 Zbl0807.32029MR1230266
- M. Saito, Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849-995 Zbl0691.14007MR1000123
- M. Saito, Mixed Hodge Modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221-333 Zbl0727.14004MR1047415
- D. Siersma, Variation mappings on singularities with a 1-dimensional critical locus, Topology 30 (1991), 445-469 Zbl0746.32014MR1113689
- D. Siersma, The vanishing topology of non isolated singularities, New Developments in Singularity Theory (2001), 447-472, Kluwer Acad. Publishers Zbl1011.32021
- J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) (1977), 525-563, Sijthoff & Noordhoff Zbl0373.14007
- P. Deligne, Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5-57 Zbl0219.14007MR498551
- P. Deligne, Théorie de Hodge III (ibid), Publ. Math. IHES 44 (1974), 5-77 Zbl0237.14003MR498552
- A. Dimca, Sheaves in Topology, (2004), Springer, Berlin Zbl1043.14003MR2050072
- P. Deligne, Le formalisme des cycles évanescents, SGA7 Exposé XIV (1973), 116-164, Springer, Berlin Zbl0266.14008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.