Some consequences of perversity of vanishing cycles

Alexandru Dimca[1]; Morihiko Saito

  • [1] Université de Nice-Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02 (France), Kyoto University, RIMS, Kyoto 606-8502 (Japan)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 1769-1792
  • ISSN: 0373-0956

Abstract

top
For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.

How to cite

top

Dimca, Alexandru, and Saito, Morihiko. "Some consequences of perversity of vanishing cycles." Annales de l’institut Fourier 54.6 (2004): 1769-1792. <http://eudml.org/doc/116158>.

@article{Dimca2004,
abstract = {For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.},
affiliation = {Université de Nice-Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02 (France), Kyoto University, RIMS, Kyoto 606-8502 (Japan)},
author = {Dimca, Alexandru, Saito, Morihiko},
journal = {Annales de l’institut Fourier},
keywords = {Milnor fibration; perverse sheaf; vanishing cycles; monodromy; mixed Hodge structures; nearby cycles; vanishing cohomology sheaf},
language = {eng},
number = {6},
pages = {1769-1792},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some consequences of perversity of vanishing cycles},
url = {http://eudml.org/doc/116158},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Dimca, Alexandru
AU - Saito, Morihiko
TI - Some consequences of perversity of vanishing cycles
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1769
EP - 1792
AB - For a holomorphic function on a complex manifold, we show that the vanishing cohomology of lower degree at a point is determined by that for the points near it, using the perversity of the vanishing cycle complex. We calculate this order of vanishing explicitly in the case the hypersurface has simple normal crossings outside the point. We also give some applications to the size of Jordan blocks for monodromy.
LA - eng
KW - Milnor fibration; perverse sheaf; vanishing cycles; monodromy; mixed Hodge structures; nearby cycles; vanishing cohomology sheaf
UR - http://eudml.org/doc/116158
ER -

References

top
  1. D. Barlet, Interaction de strates consécutives pour les cycles évanescents, Ann. Sci. École Norm. Sup. (4) 24 (1991), 401-505 Zbl0772.32024MR1123558
  2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, 100 (1982), Soc. Math. France, Paris Zbl0536.14011MR751966
  3. J.L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales 140-141 (1986), 3-134 Zbl0624.32009
  4. N. Budur, M. Saito, Multiplier ideals, V -filtration, and spectrum Zbl1086.14013
  5. D. Cohen, A. Suciu, On Milnor fibrations of arrangements, J. London Math. Soc. 51 (1995), 105-119 Zbl0814.32007MR1310725
  6. P. Deligne, Théorie de Hodge I, Actes Congrès Intern. Math. 1 (1970), 425-430 Zbl0219.14006MR441965
  7. P. Deligne, Le formalisme des cycles évanescents, SGA7 Exposé XIII (1973), 82-115, Springer, Berlin Zbl0266.14008
  8. A. Dimca, A. Libgober, Local topology of reducible divisors Zbl1117.14037
  9. A. Dimca, M. Saito, Monodromy at infinity and the weights of cohomology, Compos. Math. 138 (2003), 55-71 Zbl1039.32037MR2002954
  10. W. Fulton, Intersection theory, (1984), Springer, Berlin Zbl0541.14005MR732620
  11. M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) 1016 (1983), 134-142, Springer, Berlin Zbl0566.32022
  12. B. Malgrange, Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II-III (Luminy, 1981) 101-102 (1983), 243-267 Zbl0528.32007
  13. V. Navarro Aznar, Sur la théorie de Hodge-Deligne, Inv. Math. 90 (1987), 11-76 Zbl0639.14002MR906579
  14. P. Orlik, R. Randell, The Milnor fiber of a generic arrangement, Ark. Mat. 31 (1993), 71-81 Zbl0807.32029MR1230266
  15. M. Saito, Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849-995 Zbl0691.14007MR1000123
  16. M. Saito, Mixed Hodge Modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221-333 Zbl0727.14004MR1047415
  17. D. Siersma, Variation mappings on singularities with a 1-dimensional critical locus, Topology 30 (1991), 445-469 Zbl0746.32014MR1113689
  18. D. Siersma, The vanishing topology of non isolated singularities, New Developments in Singularity Theory (2001), 447-472, Kluwer Acad. Publishers Zbl1011.32021
  19. J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) (1977), 525-563, Sijthoff & Noordhoff Zbl0373.14007
  20. P. Deligne, Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5-57 Zbl0219.14007MR498551
  21. P. Deligne, Théorie de Hodge III (ibid), Publ. Math. IHES 44 (1974), 5-77 Zbl0237.14003MR498552
  22. A. Dimca, Sheaves in Topology, (2004), Springer, Berlin Zbl1043.14003MR2050072
  23. P. Deligne, Le formalisme des cycles évanescents, SGA7 Exposé XIV (1973), 116-164, Springer, Berlin Zbl0266.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.