Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Korovkin-type theorems and applications

Nazim Mahmudov — 2009

Open Mathematics

Let {T n} be a sequence of linear operators on C[0,1], satisfying that {T n (e i)} converge in C[0,1] (not necessarily to e i) for i = 0,1,2, where e i = t i. We prove Korovkin-type theorem and give quantitative results on C 2[0,1] and C[0,1] for such sequences. Furthermore, we define King’s type q-Bernstein operator and give quantitative results for the approximation properties of such operators.

On q-Szász-Durrmeyer operators

Nazim MahmudovHavva Kaffaoğlu — 2010

Open Mathematics

In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.

Approximation properties of bivariate complex q -Bernstein polynomials in the case q > 1

Nazim I. Mahmudov — 2012

Czechoslovak Mathematical Journal

In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate q -Bernstein polynomials for a function analytic in the polydisc D R 1 × D R 2 = { z C : | z | < R 1 } × { z C : | z | < R 1 } for arbitrary fixed q > 1 . We give quantitative Voronovskaja type estimates for the bivariate q -Bernstein polynomials for q > 1 . In the univariate case the similar results were obtained by S. Ostrovska: q -Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution...

Page 1

Download Results (CSV)