The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.
We analyze a new formulation of the Stokes equations in
three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to
the angular variable: the problem for each Fourier coefficient is two-dimensional and has
six scalar unknowns, corresponding to the vector potential and the vorticity. A
spectral discretization is built on this formulation, which leads to an exactly
divergence-free discrete velocity. We prove optimal error estimates.
Download Results (CSV)