Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A new formulation of the Stokes problem in a cylinder, and its spectral discretization

Nehla AbdellatifChristine Bernardi — 2004

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.

A new formulation of the Stokes problem in a cylinder, and its spectral discretization

Nehla AbdellatifChristine Bernardi — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.

Page 1

Download Results (CSV)