A new formulation of the Stokes problem in a cylinder, and its spectral discretization
Nehla Abdellatif; Christine Bernardi
- Volume: 38, Issue: 5, page 781-810
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAbdellatif, Nehla, and Bernardi, Christine. "A new formulation of the Stokes problem in a cylinder, and its spectral discretization." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.5 (2004): 781-810. <http://eudml.org/doc/245019>.
@article{Abdellatif2004,
abstract = {We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.},
author = {Abdellatif, Nehla, Bernardi, Christine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stokes problem; spectral methods; axisymmetric geometries; Fourier expansion; vector potential; optimal error estimates},
language = {eng},
number = {5},
pages = {781-810},
publisher = {EDP-Sciences},
title = {A new formulation of the Stokes problem in a cylinder, and its spectral discretization},
url = {http://eudml.org/doc/245019},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Abdellatif, Nehla
AU - Bernardi, Christine
TI - A new formulation of the Stokes problem in a cylinder, and its spectral discretization
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 5
SP - 781
EP - 810
AB - We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.
LA - eng
KW - Stokes problem; spectral methods; axisymmetric geometries; Fourier expansion; vector potential; optimal error estimates
UR - http://eudml.org/doc/245019
ER -
References
top- [1] N. Abdellatif, Méthodes spectrales et d’éléments spectraux pour les équations de Navier–Stokes axisymétriques. Thesis, Université Pierre et Marie Curie, Paris (1997).
- [2] N. Abdellatif, A mixed stream function and vorticity formulation for axisymmetric Navier–Stokes equations. J. Comp. Appl. Math. 117 (2000) 61–83. Zbl0966.76063
- [3] M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour le système de Stokes tridimensionnel. C. R. Acad. Sci. Paris Série I 328 (1999) 935–938. Zbl0945.76042
- [4] M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour les équations de Stokes tridimensionnelles. Actes des VI Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques, Publ. Univ. Pau, Pau (2001) 61–68. Zbl1079.65550
- [5] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. Zbl0914.35094
- [6] F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497–1520. Zbl0932.65110
- [7] C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag. Math. Appl. 10 (1992). Zbl0773.47032MR1208043
- [8] C. Bernardi, V. Girault and Y. Maday, Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12 (1992) 565–608. Zbl0753.76130
- [9] C. Bernardi, M. Dauge and Y. Maday, Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube, in Proc. Conf. Boundary Value Problems and Integral Equations in Non smooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Dekker. Lect. Notes Pure Appl. Math. 167 (1994) 27–46. Zbl0830.46015
- [10] C. Bernardi, M. Dauge, Y. Maday and M. Azaïez, Spectral Methods for Axisymmetric Domains. Gauthier-Villars & North-Holland. Ser. Appl. Math. 3 (1999). Zbl0929.35001MR1693480
- [11] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. Zbl0567.41008
- [12] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. Zbl0968.35113
- [13] M. Duloué, Analyse numérique des problèmes d’écoulement de fluides. Thesis, Université de Pau et des Pays de l’Adour, Pau (2001).
- [14] V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33 (1979) 235–271. Zbl0396.65070
- [15] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). Zbl0585.65077
- [16] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Review 21 (1979) 167–212. Zbl0427.65073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.