Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima AmouraChristine BernardiNejmeddine Chorfi — 2006

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima AmouraChristine BernardiNejmeddine Chorfi — 2007

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...

A penalty algorithm for the spectral element discretization of the Stokes problem

Christine BernardiAdel BlouzaNejmeddine ChorfiNizar Kharrat — 2011

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.

A penalty algorithm for the spectral element discretization of the Stokes problem

Christine BernardiAdel BlouzaNejmeddine ChorfiNizar Kharrat — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.

Page 1

Download Results (CSV)