A penalty algorithm for the spectral element discretization of the Stokes problem*
Christine Bernardi; Adel Blouza; Nejmeddine Chorfi; Nizar Kharrat
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 2, page 201-216
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math.85 (2000) 257–281.
- M. Bercovier, Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).
- M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér.12 (1978) 211–236.
- C. Bernardi, Indicateurs d'erreur en h – N version des éléments spectraux. RAIRO Modél. Math. Anal. Numér.30 (1996) 1–38.
- C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal.42 (1991) 1–32.
- C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical AnalysisV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485.
- C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci.9 (1999) 395–414.
- C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251–278.
- C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci.13 (2003) 1599–1628.
- C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications45. Springer-Verlag (2004).
- G.F. Carey and R. Krishnan, Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng.35 (1982) 169–206.
- G.F. Carey and R. Krishnan, Penalty finite element method for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.42 (1984) 183–224.
- G.F. Carey and R. Krishnan, Convergence of iterative methods in penalty finite element approximation of the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.60 (1987) 1–29.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986).
- Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput.14 (1993) 310–337.
- D.S. Malkus and E.T. Olsen, Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33–50.