A penalty algorithm for the spectral element discretization of the Stokes problem*

Christine Bernardi; Adel Blouza; Nejmeddine Chorfi; Nizar Kharrat

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

  • Volume: 45, Issue: 2, page 201-216
  • ISSN: 0764-583X

Abstract

top
The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.

How to cite

top

Bernardi, Christine, et al. "A penalty algorithm for the spectral element discretization of the Stokes problem*." ESAIM: Mathematical Modelling and Numerical Analysis 45.2 (2011): 201-216. <http://eudml.org/doc/197386>.

@article{Bernardi2011,
abstract = { The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique. },
author = {Bernardi, Christine, Blouza, Adel, Chorfi, Nejmeddine, Kharrat, Nizar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Stokes problem; spectral elements; penalty algorithm},
language = {eng},
month = {1},
number = {2},
pages = {201-216},
publisher = {EDP Sciences},
title = {A penalty algorithm for the spectral element discretization of the Stokes problem*},
url = {http://eudml.org/doc/197386},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Chorfi, Nejmeddine
AU - Kharrat, Nizar
TI - A penalty algorithm for the spectral element discretization of the Stokes problem*
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/1//
PB - EDP Sciences
VL - 45
IS - 2
SP - 201
EP - 216
AB - The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
LA - eng
KW - Stokes problem; spectral elements; penalty algorithm
UR - http://eudml.org/doc/197386
ER -

References

top
  1. F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math.85 (2000) 257–281.  
  2. M. Bercovier, Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).  
  3. M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér.12 (1978) 211–236.  
  4. C. Bernardi, Indicateurs d'erreur en h – N version des éléments spectraux. RAIRO Modél. Math. Anal. Numér.30 (1996) 1–38.  
  5. C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal.42 (1991) 1–32.  
  6. C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical AnalysisV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485.  
  7. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci.9 (1999) 395–414.  
  8. C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251–278.  
  9. C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci.13 (2003) 1599–1628.  
  10. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications45. Springer-Verlag (2004).  
  11. G.F. Carey and R. Krishnan, Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng.35 (1982) 169–206.  
  12. G.F. Carey and R. Krishnan, Penalty finite element method for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.42 (1984) 183–224.  
  13. G.F. Carey and R. Krishnan, Convergence of iterative methods in penalty finite element approximation of the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng.60 (1987) 1–29.  
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986).  
  15. Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput.14 (1993) 310–337.  
  16. D.S. Malkus and E.T. Olsen, Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33–50.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.