Absence of positive eigenvalues for a class of subelliptic operators.
We establish a Carleman type inequality for the subelliptic operator in , , where , . As a consequence, we show that has the strong unique continuation property at points of the degeneracy manifold if the potential is locally in certain spaces.
A recent result of Bahouri shows that continuation from an open set fails in general for solutions of where and is a (nonelliptic) operator in satisfying Hörmander’s condition for hypoellipticity. In this paper we study the model case when is the subelliptic Laplacian on the Heisenberg group and is a zero order term which is allowed to be unbounded. We provide a sufficient condition, involving a first order differential inequality, for nontrivial solutions of to have a finite order...
We prove the hypoellipticity for systems of Hörmander type with constant coefficients in Carnot groups of step 2. This result is used to implement blow-up methods and prove partial regularity for local minimizers of non-convex functionals, and for solutions of non-linear systems which appear in the study of non-isotropic metric structures with scalings. We also establish estimates of the Hausdorff dimension of the singular set.
In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.
In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.
Page 1