Approximations of the brownian rough path with applications to stochastic analysis
We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.
We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.
Page 1