Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A class of time discrete schemes for a phase–field system of Penrose–Fife type

Olaf Klein — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a phase field system of Penrose–Fife type with non–conserved order parameter is considered. A class of time–discrete schemes for an initial–boundary value problem for this phase–field system is presented. In three space dimensions, convergence is proved and an error estimate linear with respect to the time–step size is derived.

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein — 2004

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator

Olaf Klein — 2023

Applications of Mathematics

Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Ishlinski-operator is considered here. Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties....

Page 1

Download Results (CSV)