Remarks on the large time behaviour of a nonlinear diffusion equation
In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.
For a bounded and sufficiently smooth domain in , , let and be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) We prove that knowledge of the Dirichlet boundary spectral data , determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map for a related elliptic problem. Under suitable hypothesis on the coefficients their identifiability is then proved. We prove also analogous results for Dirichlet...
In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.
In this paper we prove a unique continuation result for a cascade system of parabolic equations, in which the solution of the first equation is (partially) used as a forcing term for the second equation. As a consequence we prove the existence of -insensitizing controls for some parabolic equations when the control region and the observability region do not intersect.
Page 1