Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Invariance groups of finite functions and orbit equivalence of permutation groups

Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections...

The minimal closed monoids for the Galois connection End - Con

The minimal nontrivial endomorphism monoids M = End Con ( A , F ) of congruence lattices of algebras ( A , F ) defined on a finite set A are described. They correspond (via the Galois connection End - Con ) to the maximal nontrivial congruence lattices Con ( A , F ) investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices Quord ( A , F ) .

Page 1

Download Results (CSV)