Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold
On étudie la cohomologie de Chevalley de la représentation adjointe de l’algèbre de Poisson d’une variété symplectique. On obtient en particulier une description explicite de la cohomologie des cochaînes 2 et 3-différentiables.
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
Page 1