Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Harary Index of Product Graphs

K. PattabiramanP. Paulraja — 2015

Discussiones Mathematicae Graph Theory

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula...

Wiener and vertex PI indices of the strong product of graphs

K. PattabiramanP. Paulraja — 2012

Discussiones Mathematicae Graph Theory

The Wiener index of a connected graph G, denoted by W(G), is defined as ½ u , v V ( G ) d G ( u , v ) . Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as ½ W ( G ) + ¼ u , v V ( G ) d ² G ( u , v ) . The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product G K m , m , . . . , m r - 1 , where K m , m , . . . , m r - 1 is the complete multipartite graph with partite sets of sizes...

C7-Decompositions of the Tensor Product of Complete Graphs

R.S. ManikandanP. Paulraja — 2017

Discussiones Mathematicae Graph Theory

In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1) either m or n is odd and (2) 14 | m(m − 1)n(n − 1). The results of this paper together with the results of [Cp-Decompositions of some regular graphs, Discrete Math. 306 (2006) 429–451] and [C5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics...

Page 1

Download Results (CSV)