The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

A note on Poisson approximation.

Paul Deheuvels — 1985

Trabajos de Estadística e Investigación Operativa

We obtain in this note evaluations of the total variation distance and of the Kolmogorov-Smirnov distance between the sum of n random variables with non identical Bernoulli distributions and a Poisson distribution. Some of our results precise bounds obtained by Le Cam, Serfling, Barbour and Hall. It is shown, among other results, that if p1 = P (X1=1), ..., pn = P (Xn=1) satisfy some appropriate conditions,...

Majoration et minoration presque sûre optimale des éléments de la statistique ordonnée d'un échantillon croissant de variables aléatoires indépendantes

Paul Deheuvels — 1974

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Se { X n ; n = 1 , 2 , } è una successione di variabili aleatorie indipendenti aventi una stessa legge e si designa con X 1 , n X 2 , n X n , n la statistica ordinata rispetto all'ordine crescente delle X 1 , X 2 , , X n , qui vengono studiate le successioni numeriche M n , m ( n ) , m n , m ( n ) tali che per n sufficientemente grande si abbia m n , m ( n ) X m ( n ) , n M n , m ( n ) . Principalmente si studiano siffatti inquadramenti per m ( n ) = m costante, da un lato per scale di funzioni a crescenza di tipo logaritmico e, dall'altro, dando condizioni necessarie e sufficienti relative alle successioni m ed M affinché esse realizzino...

One Bootstrap suffices to generate sharp uniform bounds in functional estimation

Paul Deheuvels — 2011

Kybernetika

We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set 𝐈 , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general...

Page 1

Download Results (CSV)