If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire classes...
Let be a complex -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- functions on the set of the extreme points of the dual unit ball to the whole unit ball . As a corollary we show that, given , the intrinsic -th Baire class of can be identified with the space of bounded homogeneous Baire- functions on the set when satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’...
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
Download Results (CSV)