Exotic logics
Let P be an orthomodular poset and let B be a Boolean subalgebra of P. A mapping s:P → ⟨0,1⟩ is said to be a centrally additive B-state if it is order preserving, satisfies s(a') = 1 - s(a), is additive on couples that contain a central element, and restricts to a state on B. It is shown that, for any Boolean subalgebra B of P, P has an abundance of two-valued centrally additive B-states. This answers positively a question raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat...
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous...
We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere.
In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate...
Page 1 Next